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In this supplementary material, we provide additional
implementation details in Section A, additional baseline
comparisons, ablations and more visual results in Section B.
We discuss limitations and future work in Section C.

A. Implementation Details
Implicit Semenatic Signed Distance Function Training.
We train the parametric semantic SDF W using 150K
FLAME instances with Gaussian sampled shapes and ex-
pressions, and jaw and neck poses within their correspond-
ing joint limits. For SDF computation with watertight ge-
ometry, we close the mesh with consistent hole filling on
the mouth cavity and below the neck. Before the training of
W , we pretrain a canonical SDF. As such, the signed dis-
tance value of a spatial point x with respect to the FLAME
mesh S(p) can be obtained by querying the canonical SDF
with its canonical correspondence point x̄. We train W with
150 epochs using a decaying learning rate of 0.0002, on a
single Tesla V100 GPU. We set the loss weights 1., 0.5, 0.1
for Liso, Leik and Lsem respectively.

Controllable 3D GAN Training. Our training largely
follows the the scheme of EG3D [2], although we only train
at a 64 × 64 neural rendering resolution. Better view con-
sistency potentially could be achieved by fine tuning the
network on 128 × 128 neural rendering resolution while is
not applied in our training given it is not the primary fo-
cus of this work. We empirically set the training weights
0.1, 1. for our geometric prior loss Lprior and control loss
Lenc, whereas our conditioning expression and joint pose
for modeling dynamic details is perturbed with a Gaussian
noise of magnitude 0.1. Following EG3D, we mirror each
training image from FFHQ [8] and rebalance the dataset by
replicating large-pose images. Additionally, for training im-
ages with jaw opening larger than 10◦, we duplicate them 4
times in our dataset. With a batch size of 32 on 8 Tesla V100
GPUs, the network is trained with iterations of 160K im-

Figure S1. Qualitative comparison on shape editing (under
the same expression in each column). Our method strictly
preserves facial identity when shape varies whereas significant
appearance variations are observed for AniFaceGAN [15] and
3DFaceShop [14].

ages. Due to the additional computational overhead in cor-
respondence mapping, our training is about 1.43× slower
than the original EG3D.

FLAME Parameters Fitting. We associate each training
image with a 16-dimensional camera extrinsics, an empiri-
cal 9-dimensional camera intrisics, and a 206-dimensional
FLAME parameter p (shape α ∈ R100, expression β ∈
R100, jaw pose θjaw ∈ R3 and neck pose θneck ∈ R3). We
fit the FLAME parameters p with a nonlinear optimization,

min
p,R,t

∥ΠS(p,R, t)− L2d∥2 + ∥p− p0∥2 (1)

where Π is a 3D landmarks extractor from FLAME mesh
S concatenated with a default camera projection, L2d the
detected image 2D landmarks and p0 the initialization of
FLAME parameters with DECA [5]. We fix θneck to be 0
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Figure S2. Qualitative comparison on multiview consistency. Our method demonstrates smooth pattern transition as camera rotates,
comparable with other controllable 3D GANs (AniFaceGAN [15], 3DFaceShop [14]). Noisy feature transitions occur for 2D GANs [4,13]
and HeadNeRF [6].

during optimization 1 and co-optimize the root rotation R
and translation t with p. After the optimization, we trans-
form the (R, t) into the camera extrinsics while locating
the optimized FLAME meshes centered at the world origin
facing towards Z axis.

Inversion. For single-view portrait manipulation and ani-
mation, we need to first find the corresponding latent em-
bedding of the input image Ī . Following the aforemen-
tioned fitting procedure, we estimate the rendering camera c
and FLAME parameter p from the input image. With that,
we perform a nonlinear optimization in the latent Z+ space
as

min
z+

∥Ī − IRGB(z
+|c,p)∥1+

+Llp(Ī , IRGB(z
+|c,p)) + ∥Div(z+)∥2, (2)

where the first term is a pixel-wise L1 loss between input
and synthesized image IRGB , Llp is the image perceptual
loss with LPIPS [17] and the last term evaluates the diver-
gence of Z+. In contrast of modulating each layer of Style-
GAN synthesis [8] with a duplicated w code mapped from
z, Z+ is more expressive with a different mapped w code
for each layer. We prevent far drifting from the original
high-quality Z latent space with the divergence term, which
otherwise leads to image quality degeneration.

For better visual reconstruction of the input portrait, we
follow the optimization with pivot tuning [11] that fine-
tunes the parameters of the triplane synthesis network with a
fixed latent code. We do not alter the parameters of the neu-
ral decoder and super-resolution module to prevent the de-

generation of multi-view consistency from overfitting. Af-
ter the fine-tuning, one can synthesize a new image using
the fine-tuned generator at novel views and expressions by
modifying the c and p accordingly. We note that optimizing
in the less regularized Z+ domain followed with Pivot Tun-
ing is necessary for identity preservation but might sacrifice
visual quality and 3D view consistency.

Foreground and Background Decomposition. While
not being the focus of the paper, our 3D-aware generator
also decomposes the 3D-aware foreground synthesis from
the background. Different from the original EG3D, our fea-
ture image I∗(z) is composed with 3D-aware human fore-
ground integrated from the neural radiance field and a 2D
background image I+(z) synthesized with 2D convolution
kernels, as

I∗(z) = I∗(z) + (1−M∗)⊙ I+(z), (3)

where M∗ is the accumulated foreground density along
camera rays. Similar to [12], we associate each training im-
age with a 2D foreground mask, and augment our discrimi-
nator D with a dual convolution branch for pairs of (I,M)
where M is up-sampled from M∗. To this end, our gener-
ator G is able to synthesize view-consistent images while
keeping the background static.

B. Experimental Analysis
Shape Manipulation Comparison. We qualitatively
compare the capability on shape editing against AniFace-
GAN [15] and 3DFaceShop [14] in Figure. S1, whereas



Figure S3. Our approach enables realistic synthesis of dynamic details, adapted to the appearance of the subject.

2D GANs (DiscoFaceGAN [4],GAN-Control [13]) do not
support shape manipulation. Our approach well preserves
the facial identity feature even with significant shape varia-
tion, indicating a clean disentanglement of geometric vari-
ation from appearance generation. Noticeable identity vari-
ation is observed when changing the shape by AniFace-
GAN [15] and 3DFaceShop [14]. This clearly shows the
benefits of our design where the neural scene generation is
not directly conditioned on the shape or expression code.
Thus by nature our appearance generation is minimally af-
fected with a modified shape and expression code, whereas
explicit regularizations are required to disentangle the con-
trol from neural appearance generation in AniFaceGAN and
3DFaceShop.

Multiview Consistency Comparison. In Figure. S2, we
visually compare the view consistency using Epipolar Line
Images (EPI) similar to [16]. The 2D generative models
shows inferior view consistency compared to NeRF-based
3D-aware generative models. The appearance transition of
HeadNeRF [6] is more noisy, largely due to the lack in fine
details in such areas as teeth. Our method shows natural
and continuous pattern transition when smoothly changing
the views, comparable with 3DFaceShop [14] and AniFace-
GAN [15].

Ablations on Correspondence Field Training. In addi-
tion to the ablation study in our main text, we further ablate
the training of the signed distance correspondence field W .
In our pipeline, we pretrain W from FLAME meshes and
freeze the weights during the 3D GAN training. Such a two-
stage training scheme decouples the 3D learning from unsu-
pervised image-based adversarial training. It also avoids the
heavy computation and overloaded memory in obtaining the

SDF gradient for Eikonal loss Leik. Nevertheless, we ex-
periment with fine-tuning the weights of W together with
image-based adversarial training. The network does not
converge (FID=90.2), indicating more regularization terms
are required if we co-learn W with image synthesis. In
practice, we find our current strategy well preserves the rich
3d prior knowledge from the 3D statistical head model, and
the synthesis network can compensate the imperfections in
our pretrained correspondence function.

Dynamic Details. In Figure S3, we show a zoomed-in
view for the dynamic details synthesis. For both subjects,
our method substantially enhances the temporal realism
with dynamic details, such as dimples and wrinkles, when
transiting from a neutral expression to smiling. Moreover,
our dynamic details are adapted to the subject’s appearance,
where we observe much less eye wrinkles on a smiling face
of a younger subject. Such capability is sourced from our
novel design, where we decode the neural radiance field
from both triplane features (appearance) and expressions.

Control Accuracy. In Figure. S4, We visualize more syn-
thesized identities with the same shape and expression code,
compared with our ablated framework without our geomet-
ric prior loss Lprior and control loss Lenc. We overlay
the images with the projected landmarks of the controlling
FLAME. Our full pipeline shows more consistent shape and
expression as specified by the input control, whereas more
variations are observed in shapes without Lprior and in ex-
pressions without Lenc.

Geometry. In Figure. S5, we show the visualization of
iso-surface geometry extracted from the prior FLAME SDF



Figure S4. Identities synthesized under the same shape and expression code with our full and ablated pipelines. Red dots indicate the
68 projected 2D landmarks of the control FLAME mesh. Our full pipeline generates images more consistent with the input control,
whereas degeneration in shape and expression control accuracy is observed after removing geometric prior loss Lprior and control loss
Lenc respectively.

Figure S5. We visualize the geometry guidance flow. Our signed distance correspondence field generates a SDF from the input FLAME
mesh and guides the generation of the neural density field. Our dynamic details are reflected in the geometric level as well.

and the density of the neural radiance field using March-
ing Cubes algorithm [10]. Our approach preserves the de-
tailed geometry synthesis capability from EG3D [2], sup-
porting multiview consistency in image generation. Our
dynamic details can also be observed in the synthesized
neural density field. Moreover, the FLAME SDF also
acts as a reasonable geometry proxy for regions with lit-
tle image supervisions, and enable building a complete
full head shape. We further provides quantitative evalu-

ation on our FLAME SDF reconstruction accuracy on a
test dataset of 1000 randomly sampled FLAME instances
using bi-directional Chamfer L2 Distance↓ (7.4 × 10−5),
Normal Consistency↑(0.933) and Volumetric Intersection
of Union (IoU↑, 0.968), following the geometric metrics in
imGHUM [1].

More Talking Head Animations. In Figure. S6, we
showcase more talking head animation examples in differ-



Figure S6. Synthesized multiview-consistent talking head animations. Each column is generated under the same expression and camera
poses.

ent views, indicating the robustness of our approach in syn-
thesizing diverse identities while maintaining the control
accuracy.

More 3D-Aware Face Reenactment Results. In Fig-
ure. S7, we show more multiview-consistent face reen-
actment videos by inverting a single-view portrait image
and manipulating the expressions by following temporal
FLAME reconstructions from a reference video. All the

reference photos and video are downloaded with Creative
Commons licences.

C. Limitations and Future Work.

Expressiveness. Our method demonstrates superior ex-
pressive controllability than prior controllable 3D GANs
and is able to synthesize images with subtle expressions,
such as eye blinks. However, the expressiveness is still
largely constrained to the FLAME model and it is diffi-



Figure S7. Our approach enables multi-view consistent face video reenactment from a single-view portrait (shown on the leftmost column).

cult to synthesize expressions that are under-represented in
the parametric expression space of FLAME, such as mouth
puckering or blowing cheeks. There is no gaze control as
well. Additionally for the application of face reenactment,
the quality is also limited by the accuracy of FLAME track-
ing over the reference video. In the future, we would like
to augment the control in more expressive representations
such as dense landmarks or even image features.

Visual Artifacts. Even with the rich 3D geometric guid-
ance from the statistical head model, there is fundamental
ambiguity in observation-to-canonical one-to-one point cor-
respondences. For example, when the mouth is closed, it is

undetermined for its canonical correspondence, if a point
is touching both the upper and lower lip in the observa-
tion space. SNARF [3] provides a differential optimization-
based solution for this ambiguity issue but suffers from
slow computational performance. Therefore modeling of
the mouth cavity is still the most challenging part due to
this correspondence ambiguity. Moreover, there is also less
visual supervision in the training images with clear obser-
vations inside the mouth cavity. Even though we are able
to alleviate this issue by rebalancing the image dataset with
replicated open-mouth images, noticeable artifacts still exist
when the mouth is opened widely as depicted in Figure S8.
We would like to explore more advanced differential corre-
spondence functions and augment our training dataset with



Figure S8. Mouth opening artifacts: blurriness in the lower (left)
or upper teeth (middle), and even missing teeth (right).

more diverse and extreme expressions.

Temporal coherence. Inherited from the StyleGAN2 [9]
synthesis network, noticeable high-frequency noise can be
observed in our synthesized animations. By switching to
StyleGAN3 [7], we expect better temporal coherence but
leave it as a future work. Additionally, with our expression-
conditioned dynamic details modeling, we occasionally ob-
serve unnatural shading variation with expression changes.
This is due to the limitation of the MLP-decoder in general-
izing to novel poses, which we consider it as an interesting
future direction to explore.
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